Sains Malaysiana 52(10)(2023): 2985-2997

http://doi.org/10.17576/jsm-2023-5210-19

 

Impact of Haze Event on Daily Admission of Respiratory System Patients in Peninsular Malaysia

(Impak Jerebu terhadap Kemasukan Harian Pesakit Sistem Pernafasan Di Semenanjung Malaysia)

 

NURUL ANIS AYUNI KHAIRUL ANUAR, HUMAIDA BANU SAMSUDIN & NORIZA MAJID*

 

Mathematical Science Department, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 23 May 2023/Accepted: 10 October 2023

 

Abstract

Diseases of the respiratory system, especially in children and the elderly, are significantly related to air pollution. Exposure to air pollution has led to an increase in the number of patients who need hospital treatment. The purpose of this study was to learn about the effects of changes in the levels of major pollutant components on the number of daily hospital admissions of respiratory system patients. The generalised linear lag model is used in this study to demonstrate the lag structure of the exposure-response impacts. The results show that particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) component factors, as well as meteorological factors like wind speed and ultraviolet (UV) radiation, affect the number of hospital admissions of respiratory system patients. The best model is a lag 6 negative binomial regression model. Daily hospital admission is positively correlated with PM10, NO2, and wind speed, and negatively correlated with CO, O3, and UV radiation. According to the findings of the study, fine particulate matter (PM2.5) and sulphur dioxide (SO2), as well as temperature, humidity, and wind direction, are not significantly contributing factors in the number of respiratory system patients admitted to hospitals.

 

Keywords: Air pollution; generalised linear lag model; hospital admissions; negative binomial regression; respiratory system diseases

 

Abstrak

Penyakit sistem pernafasan, terutamanya pada kanak-kanak dan orang tua mempunyai kaitan yang ketara dengan pencemaran udara. Pendedahan kepada pencemaran udara telah menyebabkan peningkatan bilangan pesakit yang memerlukan rawatan di hospital. Tujuan kajian ini adalah untuk mengetahui tentang kesan perubahan tahap komponen pencemar utama terhadap kekerapan kemasukan ke hospital harian pesakit sistem pernafasan. Model lag linear teritlak digunakan dalam kajian ini untuk menunjukkan struktur lag bagi kesan pendedahan-tindak balas. Keputusan menunjukkan bahawa partikel terampai (PM10), nitrogen dioksida (NO2), karbon monoksida (CO), dan faktor komponen ozon (O3), serta faktor meteorologi seperti kelajuan angin dan sinaran UV, mempengaruhi bilangan kemasukan pesakit sistem pernafasan ke hospital. Model terbaik ialah model regresi binomial negatif lag 6. Kemasukan hospital harian berkorelasi positif dengan PM10, NO2, dan kelajuan angin, dan berkorelasi negatif dengan sinaran CO, O3, dan ultraviolet (UV). Menurut penemuan kajian, partikel terampai halus (PM2.5) dan sulfur dioksida (SO2), serta suhu, kelembapan, dan arah angin, bukan merupakan faktor penyumbang yang signifikan terhadap kemasukan pesakit sistem pernafasan ke hospital.

 

Kata kunci: Kemasukan hospital; model lag linear teritlak; pencemaran udara; penyakit sistem pernafasan; regresi binomial negatif

REFERENCES

Atkinson, R., Bremner, S., Anderson, H., Strachan, D. & Bland, J. 1999. Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. Archives of Environmental Health 54(6): 398-411. https://doi.org/10.1080/00039899909603371

Bodaghkhani, E., Mahdavian, M., MacLellan, C., Farrell, A. & Asghari, S. 2019. Effects of meteorological factors on hospitalisations in adult patients with asthma: A systematic review. Canadian Respiratory Journal 9: 1-11. https://doi.org/10.1155/2019/3435103

Bousquet, J. & Khaltaev, N. 2007. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach.World Health Organization. https://apps.who.int/iris/handle/10665/43776

Cameron, A. & Trivedi, P. 2013. Regression Analysis of Count Data. 2nd ed. Cambridge: Cambridge University Press.

Cameron, A. & Trivedi, P. 1998. Regression Analysis of Count Data. United Kingdom: Cambridge University Press.

Capraz, Ö. & Deniz, A. 2021. Assessment of hospitalisations from asthma, chronic obstructive pulmonary disease and acute bronchitis in relation to air pollution in İstanbul, Turkey. Sustainable Cities and Society 72: 103040. https://doi.org/10.1016/j.scs.2021.103040

Chen, L., Mengersen, K. & Tong, S. 2006. Spatiotemporal relationship between particle air pollution and respiratory emergency hospital admissions in Brisbane, Australia. Science of the Total Environment 373(1): 57-67. https://doi.org/10.1016/j.scitotenv.2006.10.050

de Souza, A., Guo, Y., Pavão, H.G. & Fernandes, W.A. 2014. Effects of air pollution on disease respiratory: Structures lag. Health 6: 1333-1339. DOI:10.4236/health.2014.612163

Department of Statistics Malaysia. 2021. Penerbitan Perangkaan Sebab Kematian di Malaysia.

Department of Statistics Malaysia. 2020. Hari Radang Paru-Paru (Pneumonia).

Department of Environment Malaysia. 2006. Malaysia Environmental Quality Report 2006.

European Respiratory Society. 2021. Forum of International Respiratory Societies (FIRS). The Global Impact of Respiratory Disease. 3rd ed. https://www.firsnet.org/images/publications/FIRS_Master_09202021.pdf

Farhat, S., Paulo, R., Shimoda, T., Conceição, G., Lin, C., Braga, A. & Warth, M. 2005. Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Braz. J. Med. Biol. Res. 38(2): 227-235. https://doi.org/10.1590/S0100-879X2005000200011

Gabriella, A., Abdullah, S. & Soemartojo, S. 2019. Comparison of poisson and quasi-poisson regression: A simulation study. Proceeding of IEEE International Conference on Software Architecture. pp. 1-8. https://doi.org/10.29244/icsa.2019.pp1-8

Gasparrini, A. 2011. Distributed lag linear and non-linear models in R: The package DLNM. Journal of Statistical Software 43(8): 1-20. https://doi.org/10.18637/jss.v043.i08 

Gasparrini, A., Armstrong, B. & Kenward, M. 2010. Distributed lag non-linear model. Statistics in Medicine 29(21): 2224-2234. https://doi.org/10.1002/sim.3940

Hanafi, N., Agarwal, D., Chippagiri, S., Brakema, E., Pinnock, H., Sheikh, A. & Liew, S.M. 2021. Chronic respiratory disease surveys in adults in low- and middle-income countries: A systematic scoping review of methodological approaches and outcomes. Journal of Global Health 11: 04026. https://doi.org/10.7189%2Fjogh.11.04026

Hansen-Flaschen, J. 2022. Respiratory Disease. https://www.britannica.com/science/respiratory-disease  (accessed on 26 November 2022).

Huber, R., Fischer, R., Wanka, E. & Heuman, C. 2012. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany. International Journal of Biometeorology 56(1): 137-143. https://doi.org/10.1007/s00484-011-0405-x

Ito, K., Thurston, G.D. & Silverman, R.A. 2007. Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J. Expo. Sci. Environ. Epidemiol. 17(Suppl 2): S45-S60. https://doi.org/10.1038/sj.jes.7500627

Jevtic, M., Dragic, N., Bijelovic, S. & Popovic, M. 2014. Cardiovascular diseases and air pollution in Novi Sad, Serbia. International Journal of Occupational Medicine and Environmental Health 27(2): 153-164. https://doi.org/10.2478/s13382-014-0239-y

Jin, L., Zhou, T., Fang, S., Zhou, X. & Ba, Y. 2022. Association of air pollutants and hospital admissions for respiratory diseases in Lanzhou, China, 2014-2019. Environment Geochemistry Health 45(3): 941-959. https://doi.org/10.1007/s10653-022-01256-2

Kulkarni, D., Wang, X., Sharland, E., Stansfield, D., Campbell, H. & Nair, H. 2022. The global burden of hospitalisation due to pneumonia caused by Staphylococcus aureus in the under-5 years children. Clinical Medicine 44:101267. https://doi.org/10.1016/j.eclinm.2021.101267

Latif, M. T., Othman, M., Idris, N., Juneng, L., Abdullah, A. M., Hamzah, W. P., Khan, M.F., Sulaiman, N.M.N., Jewaratnam, J., Aghamohammadi, N. and Sahani, M., Chung, J.X., Ahamad, F. Amil, N., Darus, M., Varkkey, H., Tangang, T. & Jaafar, A. B. 2018. Impact of regional haze towards air quality in Malaysia: A review. Atmospheric Environment 177: 28-44. https://doi.org/10.1016/j.atmosenv.2018.01.002.

Marciniuk, D., Ferkol, T., Nana, A., Oca, M., Rabe, K. & Billo, N. 2014. Respiratory diseases in the world. Realities of today – opportunities for tomorrow. Forum of International Respiratory Societies (FIRS). African Journal of Respiratory Medicine 9(1):4-13. https://www.africanjournalofrespiratorymedicine.com/articles/AJRM%20Mar%2014%20pp%204-13.pdf

McCullagh, P. & Nelder, J. 1989. Generalized Linear Models. 2 ed. New York: Chapman & Hall.

Ministry of Health Malaysia. 2021. Laporan Tahunan Kementerian Kesihatan Malaysia 2021.https://www.moh.gov.my/moh/resources/Penerbitan/Penerbitan %20Utama/ANNUA L%20 REPORT/Laporan_Tahunan_KKM

Ministry of Health Malaysia. 2020. Laporan Tahunan Kementerian Kesihatan Malaysia 2020. https://www .moh.gov.my/moh /resources/Penerbitan/Penerbitan %20Utama/ANNUAL %20REPORT /Laporan_ Tahunan_KKM_2020.pdf

Ming, C.R., Ban, Y‐L.A., Abdul Hamid, M.F., Latif, M.T., Mohammad, N. & Hassan, T. 2018. Annual Southeast Asia haze increases respiratory admissions: A 2‐year large single institution experience. Respirology 23(10): 914-920. https://doi.org/10.1111/resp.13325

Mohd Diah, I. & Aziz, N. 2021. Mapping of pneumonia disease in Malaysia using Poisson-Gamma model. AnnalsofR.S.C.B.25(1):2062-2067. http://www.annalsofrscb.ro/index.php/journal/article/view/324

Murray, C.J. & Lopez, A.D. 1996. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries and Risk Factors in 1990 and Projected to 2020. World Health Organization. https://cir.nii.ac.jp/crid/1570009750030873728

Naser, A.Y., Mansour, M.M., Alanazi, A.F., Sabha, O., Alwafi, H., Jalal, Z. & Mustafa Ali, M.K. 2021. Hospital admission trends due to respiratory diseases in England and Wales between 1999 and 2019: An ecological study. BMC Pulmonary Medicine 21: 356-365. https://doi.org/10.1186/s12890-021-01736-8

Othman, J., Sahani, M., Mahmud, M. & Ahmad, M.K.S. 2014. Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation. Environmental Pollution 189: 194-201. http://doi.org/10.1016/j.envpol.2014.03.010

Otieno, O.J., Joseph, M. & John, O. 2012. Mathematical model for pneumonia dynamics among children. Southern Africa Mathematical Sciences Association Conference (SAMSA), 26-29 November, Africa. http://doi.org/10.12988/ijma.2013.35109

Raffee, A., Abdul Hamid, H., Radin Mohamed, R. & Jaffar, M. 2018. Time series analysis of PM10 concentration in Parit Raja residential area. International Journal of Engineering & Technology 7: 15-21.

Santos, U., Arbex, M.A., Braga, A., Mizutani, R., Cançado, J., Terra-Filho, M. & Chatkin, J. 2021. Environmental air pollution: respiratory effects. The Brazilian Journal of Pneumology and International 47(1): e20200267. https://doi.org/10.36416/1806-3756/e20200267

Seyoum, A., Ndlovu, P. & Zewotir, T. 2016. Quasi-Poisson versus negative binomial regression models in identifying factors affecting initial CD4 cell count change due to antiretroviral therapy administered to HIV-positive adults in North–West Ethiopia (Amhara region). AIDS Research and Therapy 13(36): 1-10. https://doi.org/10.1186/s12981-016-0119-6

Tian, L., Ho, K., Wang, T., Qiu, H., Pun, V., Chan, C. & Yu, I. 2014. Ambient carbon monoxide and the risk of hospitalisation due to chronic obstructive pulmonary disease. American Journal of Epidemiology 180(12): 1159-1167. https://doi.org/10.1093/aje/kwu248

UNICEF 2022. Pneumonia. https://data.unicef.org/topic/child-health/pneumonia/ (accessed on 15 November 2022).

Unver, E., Bolat, E., Altin, S., Çoban, A., Aktaş, M., Fiçici, M. & Saral, A. 2019. The effect of air pollution on respiratory system disease admissions and health expenditures. Eurasian Journal of Medicine and Investigation 3(2): 137-143. https://doi.org/10.14744/ejmi.2019.56609

WHO. 2022. World Health Statistics 2022: Monitoring Health for The SDGs, Sustainable Development Goals. World Health Organization. https://www.who.int/publications/i/item/9789240051157

WHO. 2021. Living Guidance For Clinical Management of COVID-19. Switzerland: WHO Press. https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2

WHO. 2008. Global Alliance Against Chronic Respiratory Diseases. Switzerland. https://apps.who.int/iris/bitstream/handle/10665/43984/9789241597203_eng.pdf

WHO. 2005. International Health Regulations. 3rd ed. Switzerland: WHO Press. https://www.who.int/publications/i/item/9789241580496

 

*Corresponding author; email: nm@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

previous